遥感技术在地质勘查中应用及发展
1.遥感技术的找矿应用
1.1 地质构造信.息的提取
内生矿产在空间上常产于各类地质构造的边缘部位及变异部位,重要的矿产主要分布于扳块构造不同块体的结合部或者近边界地带,在时间上一般与地质构造事件相伴而生,矿床多成带分布,成矿带的规模和地质构造变异大致相同。
遥感找矿的地质标志主要反映在空间信息上。从与区域成矿相关的线状影像中提取信息(主要包括断裂、芍理、推覆体等类型),从中酸性岩体、火山盆地、火山机构及深亨岩浆、热液活动相关的环状影像提取信息(包括与火山有关的盆地、构造),从矿源层、赋矿岩层相关的带状影像提取信启、(主要表现为岩层信息),从与控矿断裂交切形成的块状影像及与感矿有关的色异常中提取信息(如与蚀变、接触带有关的色环、色带、色块等)。当断裂是主要控矿构造时,对断裂构造遥感信息进行重点提取会取得一定的成效。
遥感系统在成像过程中可能产生“模糊作用”,常使用户感兴趣的线性形迹、纹理等信息显示得不清晰、不易识别。人们通过目视解译和人机交互式方法,对遥感影像进行处理,如边缘增强、灰度拉伸、方向滤波、比值分析、卷积运算等,可以将这些构造信息明显地突现出来。除此之外,遥感还可通过地表岩性、构造、地貌、水系分布、植被分布等特征来提取隐伏的构造信息,如褶皱、断裂等。提取线性信息的主要技术是边缘增强。
1.2 植被波谱特征的找矿意义
在微生物以及地下水的参与下,矿区的某些金属元素或矿物引起上方地层的结构变化,进而使土壤层的成分产生变化,地表的植物对金属具有不同程度的吸收和聚集作用,影响植叶体内叶绿素、含水量等的变化,导致植被的反射光谱特征有不同程度的差异。矿区的生物地球化学特征为在植被地区的遥感找矿提供了可能,可以通过提取遥感资料中由生物地球化学效应引起的植被光谱异常信息来指导植被密集覆盖区的矿产勘查,较为成功的是某金矿的遥感找矿、东南地区金矿遥感信息提取。
不同植被以及同种植被的不同器官问金属含量的变化很大,因此需要在已知矿区采集不同植被样品进行光谱特征测试,统计对金属最具吸收聚集作用的植被,把这种植被作为矿产勘探的特征植被,其他的植被作为辅助植被。遥感图像处理通常采用一些特殊的光谱特征增强处理技术,采用主成分分析、穗帽变换、监督分类(非监督分类)等方法。植被的反射光谱异常信息在遥感图像上呈现特殊的异常色调,通过图像处理,这些微弱的异常可以有效地被分离和提取出来,在遥感图像上可用直观的色调表现出来,以这种色调的异同为依据来推测未知的找矿靶区。植被内某种金属成分的含量微小,因此金属含量变化的检测受到谱测试技术灵敏度的限制,当金属含量变化微弱时,现有的技术条件难以检测出,检测下限的定量化还需进一步试验。理论上讲,高光谱提取植被波谱的性能要优于多光谱很多倍,例如对某一农业区进行管理,根据每一块地的波谱空间信息可以做出灌溉、施肥、喷洒农药等决策,当某农作物干枯时,多光谱只能知道农作物受到损害,而高光谱可以推断出造成损害的原因,是因为土地干旱还是遭受病虫害。因此利用高光谱数据更有希望提取出对找矿有指示意义的植被波谱特征。
1.3 矿床改造信息标志
矿床形成以后,由于所在环境、空间位置的变化会引起矿床某些性状的改变。利用不同时相遥感图像的宏观对比,可以研究矿床的剥蚀改造作用;结合矿床成矿深度的研究,可以对类矿床的产出部位进行判断。通过研究区域夷平面与矿床位置的关系,可以找寻不同矿床在不同夷平面的产出关系及分布规律,建立夷平面的找矿标志。另外,遥感图像还可进行岩性类型的区分应用于地质填图,是区域地质填图的理想技术之一,有利于在区域范围内迅速圈定找矿靶区。
2.遥感找矿的发展前景
2.1 高光谱数据及微波遥感的应用
高光谱是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。它利用成像光谱仪以纳米级的光谱分辨率,成像的同时记录下成百条的光谱通道数据,从每个像元上均可以提取一条连续的光谱曲线,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而具有巨大的应用价值和广阔的发展前景。成像光谱仪获得的数据具有波段多,光谱分辨率高、波段相关性高、数据冗余大、空问分辨率高等特点。高光谱图像的光谱信息层次丰富,不同的波段具有不同的信息变化量,通过建立岩石光谱的信息模型,可反演某些指示矿物的丰度。充分利用高光谱的窄波段、高光谱分辨率的优势,结合遥感专题图件以及利用丰富的纹理信息,加强高光谱数据的处理应用能力。微波遥感的成像原理不同于光学遥感,是利用红外光束投射到物体表面,由天线接收端接收目标返回的微弱回波并产生可监测的电压信号,由此可以判定物体表面的物理结构等特征。微波遥感具有全天时、全天候、穿透性强、波段范围大等特点,因此对提取构造信息有一定的优越性,同时也可以区分物理结构不同的地表物体,因为穿透性强,对覆盖地区的信息提取也有效。微波遥感技术因其自身的特点而具有很大的应用潜力,但微波遥感在天线、极化方式、斑噪消除、几何校正及辐射校正等关键技术都有待于深入研究,否则势必影响微波遥感的发展。
2.2 数据的融合
随着遥感技术的微波、多光谱、高光谱等大量功能各异的传感器不断问世,它们以不同的空间尺度、时间周期、光谱范围等多方面反映地物目标的各种特性,构成同一地区的多源数据,相对于单源数据而言,多源数据既存在互补性,又存在冗余性。任何单源信息只能反映地物目标的某一方面或几个方面的特征,为了更准确地识别目标,必须从多源数据中提取比单源数据更丰富、有用的信息。多源数据的综合分析、互相补充促使数据融合技术的不断发展。通过数据融合,一方面可以去除无用信息,减少数据处理量,另一方面将有用的信息集中起来,便于各种信息特征的优势互补。 数据的融合包括遥感数据间的融合、遥感数捱与非遥感数据的融合。融合技术的实现方法有多种,简单易行的是对几何配准后的像元逐点进行四则运算或HIS变换,还有一些方法是对多源数据先进行预处理(特征提取、判别分析)后再进行信息融合,主要的方法有代数运算融合、小波变换融合等。
蚀变矿物特征光谱曲线的吸收谷位于多光谱数据的波段位置,因此可以识别蚀变矿物,但是波段较宽,只对蚀变矿物的种属进行分类。与可见一红外波段的电磁波相比,雷达波对地面的某些物体具有强的穿透能力,能够很好地反映线性、环性沟造。雷达图像成像系统向多波段、多极化、多模式发展,获取地表信息的能力越来越强。总的来说,多光谱、高光谱数据的光谱由线特征具有区分识别岩石矿物的效果,所以对光学图像与雷达图像进行融合处理,既能提高图像的分辨率、增强纹理的识别能力,又能有效地识别矿物类型。(责任编辑:论文发表网)转贴于八度论文发表网: http://www.8dulw.com(论文网__代写代发论文_论文发表_毕业论文_免费论文范文网_论文格式_广东论文网_广州论文网)